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Introduction
Maintenance of available phosphorus (P) in soil is a 
problem faced by all growers. This paper discusses 
potential agronomic strategies to assist in sustainable 
management of the soil P resource in Australian 
farming systems, with an emphasis on material relevant 
to northern New South Wales (NSW) pasture-based 
systems. Firstly some background information about 
the P cycle is provided and the role of soil organic 
matter and microbes is highlighted. Three broad 
options for P management are considered; (i) importing 
P as fertilisers, either mineral or organic, (ii) practices 
for increasing soil P cycling to facilitate release and 
synchronous uptake of plant-available P, and (iii) 
approaches for maximising the P use-efficiency of crops 
and pasture species in the system. 

P cycle, soil organic matter, microbes and 
mycorrhizae 

Phosphorus can exist in many different forms in soil 
(Figure 1), from readily plant-available sources such as 
mineral phosphate and easily converted labile organic 
P compounds; to highly insoluble forms including P in 
some complex organic matter compounds and P ‘fixed’ 
by minerals. The soil type (texture and pH in particular) 
and the organic matter content influence how P behaves 
in the soil, the pathways it follows and where it ends 
up. Ultimately the goal of the grower is to maximise P 
uptake into the plant. 
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Abstract. This paper considers potential agronomic strategies to assist in sustainable management of the soil phosphorus 
resource in Australian farming systems, with an emphasis on material relevant to northern New South Wales pastures. 
The option most likely to ensure that soluble phosphorus is not a limitation in the system is the import of phosphorus 
as mineral fertiliser. However, as fertiliser prices rise there is increasing interest in other options, such as composts and 
biosolids, which can provide some readily available phosphorus as well as organic phosphorus for improving the ‘cycling’ 
of phosphorus within the system. Agronomic management to maximise quantity and quality of pasture and crop plant 
residues also facilitates phosphorus cycling since it builds soil organic matter, but is more effective if there is sufficient 
and reliable rainfall to drive high dry matter production. Improving the phosphorus-use efficiency of the system by 
incorporating species into rotation or intercropping systems that are able to access phosphorus from less soluble sources 
has been successful in other parts of the world, but there is scarce information for such systems in Australia. A long-shot 
is the seed and soil microbial inoculants to facilitate improved phosphorus uptake that are currently being field tested 
in Australia. Progress, in selection and breeding for cereal genotypes that are agronomically more phosphorus-efficient, 
and other plant genotypes that can access less labile phosphorus sources, is gaining momentum but also still remains a 
long term prospect.

Soil organic matter (SOM) is important for a number of 
physical, chemical and biological functions. It changes 
relatively slowly over time but can be increased as long 
as inputs are greater than outputs ie. more carbon 
going in as roots and residues than is coming out as 
respiration. Soil microbes are part of the SOM. A major 
question concerns how can growers manipulate this 
tiny but very important ‘pool’ that contributes to the 
overall ‘health’ of the soil, and more specifically is the 
‘eye of the needle’ through which organic matter has to 
pass in order to produce plant available nutrients such 
as phosphate (Figure 1).

Another soil microorganism, the mycorrhizae, can 
contribute to uptake of P by plants, although the 
process is very complex and the details of the processes 
involved are still the subject of much research. A range 
of direct and less direct mechanisms has been suggested 
including: increased physical exploration of the soil; 
increased P movement into mycorrhizal hyphae, 
modification of the root environment; efficient transfer 
of P to plant roots; increased storage of absorbed P; and 
efficient utilisation of P within the plant. However, in 
Australian systems, or at least for crops, it seems that 
a high level of infection with mycorrhizal fungi does 
not confer yield benefits and sometimes causes a yield 
penalty (Ryan et al. 2002; Ryan et al. 2004; Ryan et al. 
2005), despite certainly contributing to P uptake (Li et 
al. 2005; Li et al. 2006; Thompson 1990). 
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Fertilisers, manures, composts and biosolids as 
sources of P

When soluble granular P fertilisers are applied to soil, 
a large proportion of the P quickly dissolves (within 
24 h) but there are many fates for that dissolved P 
once it gets into the soil solution pool (Figure 1). The 
concentration of P around the fertiliser granule is 
high, and P may be lost from the soil solution pool by 
precipitation reactions, where soluble P combines with 
other elements in the soil (calcium, aluminium, iron) 
to produce new solid compounds (Figure 1). Some of 
these new compounds can eventually dissolve over 
time, or when a plant root reaches them, to release P 
into a soluble form again. However, some P compounds 
can remain very insoluble and are therefore ‘locked up’ 
in the non-exchangeable pool (Figure 1) and effectively 
unavailable for plant uptake. As P moves away from the 
granule through soil pores it binds to soil surfaces by a 
process called adsorption. This is where P is attracted 
to the clay mineral surfaces of soils – some of the P on 
the surface remains in a plant available form (ie. it can 
move back into the soil solution pool) but some may 
be very strongly bound and permanently removed from 
the plant available pool into the non-exchangeable pool 
(Figure 1). Crops derive their P from the soil solution 
that is in equilibrium with the adsorbed P in the soil 
(this process is called desorption – see Figure 1) and 
from P compounds that can readily dissolve. 

Part of the dissolved P is also incorporated into the soil 
organic matter by the soil microbial biomass but can 
be later mineralised to soluble P by other microbial 
processes or exudates from plant roots (Figure 1). Soil 
microbes however compete with crop roots for soil 
solution P (McLaughlin and Alston 1986; McLaughlin 
et al. 1988c). Organic P in soil also exists in forms that 

Figure 1. Soil P Cycle – pools and pathways. Modified from: McLaughlin et al. (1999).

Table 1. Concentration of N, P and K on a dry weight basis 
in commonly applied wastes or residues [Modified from 
Gascho (2002) and Pittaway (2002)]

Waste N 
(%)

P 
(%)

K 
(%)

Livestock manures 1–3 0.4–2 1–2.5

Poultry manures 0.3–5 1–3 1–2

Pig bedding litter 0.3–1 0.05–0.6 0.2–0.7

Plant Residues 1–7 0.1–1.7 0.1–9

 cotton trash 1.3 0.45 0.36

 peanut shells 0.8 0.15 0.5

 cornstalks 0.8 – 0.8

 wheat straw 0.3–0.5 0.15–0.26 0.6–1.02

Municipal biosolids 2–9 1.5–5 0.2–0.8

Mg/L

Municipal effluents 1.6–2.7 0.2–1.2 1.1–1.7
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differ in how they react with the soil solution pool and 
these are commonly called labile and non-labile pools 
(Figure 1). When organic fertilisers such as composts, 
manures and biosolids are applied to soil they contribute 
P to both the soluble and organic pools, and they can 
contain considerable amounts of P (Table 1). Grazing 
animals will also contribute to P cycling via dung and 
urine, and may concentrate nutrients in ‘camp’ areas, 
but further discussion of this is outside the scope of this 
paper. Data for Australia demonstrates that biosolids 
can supply P to support crop yields equivalent to that 
obtained with inorganic P fertiliser (Weggler-Beaton 
et al. 2003) and that biosolids have a residual nutrient 
value, including P (Pritchard et al. 2006). Nevertheless, 
soluble P availability from organic fertilisers needs 
to be managed to avoid potential losses and negative 
environmental impacts (Bell et al. 2006). 

Increasing P cycling – residues and rotations

Practices that increase organic matter in soil should, 
generally, increase the capacity to cycle P. Thus, at the 
Wagga Wagga long term trial site in south-eastern 
Australia, organic P increased over 24 years in the 
rotations with a mulched subterranean clover pasture 
component, especially with direct-drill (Table 2). 
Losses of organic P were largest (–42 kg P/ha) under 
continuous wheat with stubble burning and cultivation 
(Bunemann et al. 2006). As can be seen from Table 2, 
the pattern of changes in organic P in the Wagga Wagga 
trial caused by agricultural management was closely 
correlated to changes in organic matter carbon (C). This 
link between organic C and organic P was also evident 
in a survey of 10 sites across southern Australia with 
different land use, including three sites from NSW. The 
data showed that organic P was highest where organic 
C input was high, such as under trees or in grassland 
and pastures, and lowest in wheat-fallow situations 
particularly with stubble-burning and cultivation. 

Concurrent with accumulation of organic P was an 
increase in P stored in the microbial biomass as shown 
by the positive correlation between organic P content 
and microbial P shown in Figure 2. Microbial P is one 
stage closer to being plant-available P than organic 
P, and so high microbial P content may reduce the P 
fertiliser requirements of a soil. 

Laboratory studies on low P status alkaline soils 
from southern Australia (S. Iqbal – PhD thesis in 
preparation) have shown that addition of mature wheat, 
pea or canola shoot residues with a wide C:P ratio (from 
870:1 to 1,860:1) to a soil low in organic C tends to build 
up microbial P but without any rapid release of plant-
available P. Eventually, after six weeks incubation, there 
was slow release of available P for the following three 
months at a rate dependent on the amount and type of 
C, P and N in the added residue. Incorporation of young 
shoot material from peas and canola with narrow C:P 
ratio (from 133–253:1), as might occur where mulching 
or green-manuring are used, increased microbial P and 
plant-available P, and resulted in growth and P uptake of 
wheat similar to that obtained with moderate additions 
of P fertiliser (4 kg P/ha). Surprisingly, addition of 
mature canola root material to soil also caused rapid 
accumulation of plant-available P, highlighting that 
contributions from roots should not be ignored in P 
budgets. Further work, combining fertiliser and plant 
residue additions together, showed that although some 
P fertiliser is temporarily immobilised as microbial 
biomass in the presence of residues, there is a net gain 
in plant-available P compared to unamended soil and 
treatments with high C:P residues only. However, to 
obtain a target amount of plant-available P in soil 

Figure 2. The potential ability of the soil to cycle P 
(microbial P) increases as organic P increases (From: 
GRDC Project UA00095 Organic P in Australian Farming 
Systems, Australian Farm Journal July 2006).

Table 2. Change in organic P and C in 0–10 cm after 24 years of different rotation, stubble management and tillage 
treatments at Wagga Wagga

Rotation Stubble and tillage management Change in organic P
(kg P/ha)

Change in organic C
(t C/ha)

Wheat-Lupin Mulch, 3 cultivations –13 –4 
Wheat-Lupin Burn, 3 cultivations –43 –6.5 
Wheat-Wheat Burn, 3 cultivations –42 –7 
Wheat-Subclover Mulch, direct-drill +47 +7 
Wheat-Subclover Mulch, 3 cultivations +5 +2 
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required more P fertiliser when plant residues with a 
high C:P ratio were present. Application of P fertiliser 
alone resulted in three times as much plant-available 
P than if the equivalent rate of P was added as half 
fertiliser and half in residues. 

Perhaps more applicable to northern NSW is a field 
study on an acidic soil with high organic carbon 
(>3.0%) in Canada which specifically measured P 
mineralisation from root residues of several crops 
(peas, canola and wheat). The authors concluded that 
root residues exhibited no tendency to immobilise P 
although the rate of P mineralisation was less than shoot 
materials (Soon and Arshad 2002). Residues of mustard 
or rapeseed varieties high in glucosinolates (Morra and 
Kirkegaard 2002) could also potentially be used for 
increasing the suppression of soil-borne diseases and 
thus maintaining a healthy root system for P uptake. 
This appears to be possible without undue effects on 
beneficial soil organisms such as mycorrhizae eg. in a 
study on Vertosols in south-eastern Australia there was 
no effect on arbuscular mycorrhiza fungal colonisation 
of wheat grown in rotation after brassica crops with 
different levels and types of root glucosinolates (Ryan 
et al. 2002).

Pastures in rotations 

Some twenty years ago, tracer studies in annual legume 
pastures on an alkaline sandy loam soil from the cereal/
sheep belt in South Australia showed that P from medic 
residues accumulated in wheat plant shoots, roots and 
in soil microbial biomass in similar proportions (6.7, 
7.0 and 8.1 per cent of total P added); ie. in one season 
a total of 21.8 per cent of the residue P became labile 
or potentially more available to the plants (McLaughlin 
and Alston 1986). Under field conditions the amount of 
residue P incorporated into microbial biomass (22–28 
per cent) was even greater (McLaughlin et al. 1988b) 
and may be related to the fact that there was a rapid 
release of soluble P directly via autolysis of the residues 
upon initial wetting of the soil at the break of the season 
(McLaughlin et al. 1988c). Further work measured the 
relative uptake of P from fertiliser and medic plant 
residues in the field and showed that most of the P 
taken up by a wheat crop originated from historic soil 
sources ie. not sources from the immediate season’s 
fertiliser or last year’s residues (McLaughlin et al. 
1988a). This underlines the fact that system P fertility 
is an integration of many years of inputs and that long 
term P management strategies need to be evaluated 
to fully understand the sustainability of particular 
systems. Overall, this work highlighted the contribution 
that annual legume pastures in southern Australia can 
make to P cycling in rotations. Studies on P cycling for 
perennial pastures in Australia appear to have focussed 
largely on the potential for losses of P (both inorganic 

and organic) from run-off under high rainfall conditions 
(Dougherty et al. 2008; Melland et al. 2008), and these 
studies emphasise that careful management is required 
to minimise the risks associated with the maintenance 
of soluble P in soil for plant uptake using inputs that 
contain P including those from grazing animals. In 
relation to pasture management practices and P cycling, 
there was some interesting work undertaken in sown 
and native pastures in northern NSW suggesting that 
over-sowing subterranean clover and applying fertiliser 
to native pastures markedly improved rates of litter and 
organic matter decomposition and N recycling (Lodge 
et al. 2006). It is likely that P cycling also increased, 
although this was not directly measured. 

Species that can solubilise P

There are several mechanisms that allow plants to access 
poorly available inorganic and organic soil-P fractions 
and thus increase the pool of soil P that contributes 
to plant P nutrition. Briefly, these include release of 
protons (H+) or hydroxyl ions (OH–), organic acid 
anions, increase in reduction capacity and rhizosphere 
phosphatase activity. A number of crop species used 
in Australian farming systems are known to excrete 
P solubilising compounds, especially legumes such as 
lupin, pigeonpea, chickpea, fababean and peas, lucerne, 
white clover but also wheat and cocksfoot (Ae et al. 
1990; Gardner et al. 1983; Li et al. 1997; Nuruzzaman 
et al. 2006).Other species, such as medics, radish and 
canola, have been shown to excrete P solubilising 
substances under P-deficient conditions (Hedley et al. 
1982; Hoffland et al. 1992; Lipton et al. 1987; Zhang 
et al. 1997) and might therefore be suited to systems 
where plant-available P is low. Furthermore, if P is 
mobilised by plants in excess of their own requirements 
then it may contribute to the P nutrition of other less P-
efficient crops grown in rotation or inter-cropped in the 
farming system. Reports from field experiments on the 
P benefits of growing these species in rotations or with 
inter-cropping in Australia are sparse although over 20 
years ago a beneficial effect on P uptake by wheat when 
grown with lupin in Western Australia was demonstrated 
(Gardner and Boundy 1983). Seed and soil microbial 
inoculants that solubilise P and facilitate improved 
shoot P uptake have been developed in Canada and are 
currently being field tested in Australia.

Maximising P efficiency

P use-efficiency by crops or pastures in simple 
agronomic terms can be defined as the amount of 
shoot biomass per unit of P present in the plant. It 
represents the integration of plant P uptake from soil 
and P translocation within the plant, processes that are 
both extremely complex (Holford 1997). Traditionally, 
pasture grass species are considered more efficient than 
pasture legume species at acquiring and using P, both 
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on an individual plant basis and under competition in 
a mixed sward (Biddiscombe et al. 1969; Caradus 1980; 
Ozanne et al. 1976; Ozanne et al. 1969). Some years ago, 
Australian researchers showed stylo was more efficient 
under low P conditions than white clover (Chisholm and 
Blair 1988) and later work further identified that some 
scope existed for selection for P efficiency within white 
clover accessions, particularly under P stress (Godwin 
and Blair 1991). However, this does not appear to have 
been undertaken.

There appears to be a growing consensus that sufficient 
genotypic variation of P efficiency within cereals exists 
to warrant breeding efforts. A comprehensive Australian 
study that screened over 100 cereal genotypes in the 
glasshouse demonstrated a wide variation in soluble P 
uptake efficiency (Osborne and Rengel 2002c), as well 
as in the capacity to use less soluble forms of P such 
as phytate and iron phosphate (Osborne and Rengel 
2002a; Osborne and Rengel 2002b). Rye and triticale 
appeared more efficient than wheat at taking up and 
utilising P at low rates of P supply, and in being able to 
access less soluble forms of P. Work using soils-based 
screening for P efficiency has also concluded there is 
germplasm in Australian wheat genotypes that may 
be valuable for breeding (Liao et al. 2004), although 
these researchers emphasise that breeding for P-uptake 
efficiency would only be feasible provided the trait is 
heritable and controlled by relatively few genes.

Another aspect of managing for P efficiency is to 
consider the plant root system architecture and 
morphology in relation to the ability to access more P 
from the soil. Plant root architecture and morphology 
are important for maximising P uptake, because root 
systems that have higher ratios of surface area to 
volume, such as those with long fine roots and abundant 
root hairs, will more effectively explore a larger volume 
of soil. Furthermore, a smaller radius of fine roots and 
root hairs causes a slower decline in P concentration 
at the root/hair surface, enabling a higher rate of P 
influx to be maintained, which may also contribute to 
greater P uptake. Therefore enhancing opportunities 
for P transport via soil-root contact through growing 
species or genotypes with greater lateral root formation 
(Blair and Godwin 1991; Gahoonia et al. 1999; Manske 
et al. 2000), longer root hairs (Gahoonia and Nielsen 
1997; Gahoonia and Nielsen 2004b), or reduced root 
diameter (Fohse et al. 1991) will give greater potential 
for increased P acquisition by plants. Agronomic 
evaluation in the field has been undertaken for barley in 
Europe demonstrating the efficacy of root traits such as 
root hair length for increased plant P uptake (Gahoonia 
et al. 2000; Gahoonia et al. 1999), as well as sustaining 
high grain yields under low P conditions (Gahoonia 
and Nielsen 2004a), although the relationships for 
wheat were reported as being less clear (Gahoonia et 

al. 1999). These European studies suggest that genetic 
modification could be used for upgrading P efficiency in 
barley genotypes, although the time frame is long-term. 
Currently, these kinds of traits are being investigated 
for Australian cereal and pasture cultivars but it will be 
some time before growers benefit from new releases. 

Conclusions
Input of soluble P is necessary to sustain productivity 
in northern NSW pasture-based systems but as mineral 
fertilisers become more expensive (and sources are 
depleted) then alternative inputs such as biosolids, 
composts and manures will become more cost-effective 
and more attractive to use. These organic fertilisers 
have additional benefits – they contain other nutrients 
(N and K) as well as P, and they increase carbon in the 
soil (improve the organic matter) as well as feeding the 
soil microbial capacity. However, organic P sources 
are relatively slow-release and also it is not easy to 
predict exactly when the soluble P will be released. So, a 
combination of mineral and organic sources for P is the 
best option. Currently, sustainable management goals 
should also consider the use of species in the system 
that are known to mobilise P from the less available 
pools and also the tactical use of green-manuring to 
return high quality residues into the soil if the soluble P 
pool is depleting. Beyond the horizon in the longer term 
will be the use of new cultivars that have been modified 
or bred to be P-efficient, either due to improved root 
architecture or to enhanced translocation of P into 
shoots. 
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